Sec. 7.2: Solve Linear Systems by Substitution

Using Substitution to Solve a Linear System:

- Solve one equation for one variable. (Hint: Look for an equation that has a coefficient of ____ or ____ for one of the variables.)
- Use the expression for the variable you solved for in the _____ step and substitute it into the other equation. Then solve for the other variable in that equation.
- Take the value of the variable you just solved for in the _____ step and substitute it back into the equation you used in the _____ step, in order to solve for the first variable.

Examples

Solve each system using substitution.

1.
$$y = 2x - 1$$

 $y = 4x + 5$

2.
$$y = \frac{1}{4}x + 2$$

 $y = \frac{3}{2}x - 3$

3. $y = 2x + 4$	$\Lambda = V + \Lambda$
	4. $y = x + 4$
y = -x - 1	18x + 3y = -9
5. 1 – 2x = -y	66x + 6y = -18
	i i
8 = -2x - 2y	5x + 2y = 22

7. A group of 40 people went to an amusement park. There were 4 times as many children as adults. Write a system of equations to represent the situation. Then solve the system to determine how many adults and how many children there were.

Sec. 7.2 Practice Problems

Solve each system by substitution.

$$y = 3x - 4
 y = 5x - 10$$

2)
$$y = 6x + 10$$

 $y = 3x + 4$

3)
$$y = -3x - 7$$

 $y = -7x - 19$

4)
$$y = -3x + 16$$

 $y = -4x + 21$

5)
$$y = 4x - 20$$

 $8x + 3y = 20$

6)
$$y = x + 4$$

 $8x - 5y = -14$

7)
$$y = 3x + 3$$

 $-4x - 5y = 23$

8)
$$-4x - 6y = 22$$

 $y = 2x + 7$

9)
$$x + y = -4$$

 $-3x - y = 0$

10)
$$y = 2$$

 $-8x + 4y = 8$

11)
$$-5x - 4y = -21$$

 $y = 5x - 1$

12)
$$2x + 4y = -12$$

 $y = x - 15$

13)
$$6x + 6y = -12$$

 $x - 3y = 10$

14)
$$x + y = -1$$

 $-7x - 5y = 13$

15)
$$-x - y = -2$$

 $-2x + 2y = 16$

16)
$$-6x + 2y = 24$$

 $-2x + 6y = 24$

17) Amy is 13 years less than twice as old as Bob. Their ages combined add to 50. Write a system of equations to represent this situation. Then solve the system using substitution to determine the ages of Amy and Bob.

Answers to Sec. 7.2 Practice Problems

1) (3, 5)

(-2, -2)

(-3, 2)

4) (5, 1)

5) (4, -4)

6) (2, 6)

7) (-2, -3)

8) (-4, -1)

9) (2, -6)(1, -3)

10) (0, 2) 14) (-4, 3) 11) (1, 4) (-3,5) 12) (8, -7)16) (-3, 3)

17) A = 2B - 13; A + B = 50; Amy is 29 years old; Bob is 21 years old.